
pydocstyle Documentation
Release 1.0.0

Amir Rachum

Apr 18, 2017

Contents

1 Quick Start 3
1.1 Usage . 3
1.2 Error Codes . 6
1.3 Release Notes . 8
1.4 Older Versions . 10
1.5 License . 12

2 Credits 13

i

ii

pydocstyle Documentation, Release 1.0.0

pydocstyle is a static analysis tool for checking compliance with Python docstring conventions.

pydocstyle supports most of PEP 257 out of the box, but it should not be considered a reference implementation.

pydocstyle supports Python 2.7, 3.3, 3.4, 3.5 and pypy.

Contents 1

http://www.python.org/dev/peps/pep-0257/

pydocstyle Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Quick Start

1. Install

pip install pydocstyle

2. Run

$ pydocstyle test.py
test.py:18 in private nested class `meta`:

D101: Docstring missing
test.py:27 in public function `get_user`:

D300: Use """triple double quotes""" (found '''-quotes)
test:75 in public function `init_database`:

D201: No blank lines allowed before function docstring (found 1)
...

3. Fix your code :)

Contents:

Usage

Installation

Use pip or easy_install:

pip install pydocstyle

Alternatively, you can use pydocstyle.py source file directly - it is self-contained.

Command Line Interface

3

http://pip-installer.org

pydocstyle Documentation, Release 1.0.0

Usage

Usage: pydocstyle [options] [<file|dir>...]

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-e, --explain show explanation of each error
-s, --source show source for each error
-d, --debug print debug information
-v, --verbose print status information
--count print total number of errors to stdout
--select=<codes> choose the basic list of checked errors by specifying

which errors to check for (with a list of comma-
separated error codes or prefixes). for example:
--select=D101,D2

--ignore=<codes> choose the basic list of checked errors by specifying
which errors to ignore (with a list of comma-separated
error codes or prefixes). for example:
--ignore=D101,D2

--convention=<name> choose the basic list of checked errors by specifying
an existing convention. Possible conventions: pep257

--add-select=<codes> amend the list of errors to check for by specifying
more error codes to check.

--add-ignore=<codes> amend the list of errors to check for by specifying
more error codes to ignore.

--match=<pattern> check only files that exactly match <pattern> regular
expression; default is --match='(?!test_).*\.py' which
matches files that don't start with 'test_' but end
with '.py'

--match-dir=<pattern>
search only dirs that exactly match <pattern> regular
expression; default is --match-dir='[^\.].*', which
matches all dirs that don't start with a dot

--ignore-decorators=<decorators>
ignore any functions or methods that are decorated by
a function with a name fitting the <decorators>
regular expression; default is --ignore-decorators=''
which does not ignore any decorated functions.

Note: When using any of the --select, --ignore, --add-select, or --add-ignore command line flags,
it is possible to pass a prefix for an error code. It will be expanded so that any code begining with that prefix will
match. For example, running the command pydocstyle --ignore=D4 will ignore all docstring content issues
as their error codes begining with “D4” (i.e. D400, D401, D402, D403, and D404).

Return Code

0 Success - no violations
1 Some code violations were found
2 Illegal usage - see error message

4 Chapter 1. Quick Start

pydocstyle Documentation, Release 1.0.0

Configuration Files

pydocstyle supports ini-like configuration files. In order for pydocstyle to use it, it must be named one of the
following options, and have a [pydocstyle] section.

• setup.cfg

• tox.ini

• .pydocstyle

• .pydocstyle.ini

• .pydocstylerc

• .pydocstylerc.ini

When searching for a configuration file, pydocstyle looks for one of the file specified above in that exact order. If
a configuration file was not found, it keeps looking for one up the directory tree until one is found or uses the default
configuration.

Note: For backwards compatibility purposes, pydocstyle supports configuration files named .pep257, as well as
section header [pep257]. However, these are considered deprecated and support will be removed in the next major
version.

Available Options

Not all configuration options are available in the configuration files. Available options are:

• convention

• select

• ignore

• add_select

• add_ignore

• match

• match_dir

• ignore_decorators

See the Usage section for more information.

Inheritance

By default, when finding a configuration file, pydocstyle tries to inherit the parent directory’s configuration and
merge them to the local ones.

The merge process is as follows:

• If one of select, ignore or convention was specified in the child configuration - Ignores the parent
configuration and set the new error codes to check. Otherwise, simply copies the parent checked error codes.

• If add-ignore or add-select were specified, adds or removes the specified error codes from the checked
error codes list.

1.1. Usage 5

pydocstyle Documentation, Release 1.0.0

• If match or match-dir were specified - use them. Otherwise, use the parent’s.

In order to disable this (useful for configuration files located in your repo’s root), simply add inherit=false to
your configuration file.

Note: If any of select, ignore or convention were specified in the CLI, the configuration files will take no
part in choosing which error codes will be checked. match and match-dir will still take effect.

Example

[pydocstyle]
inherit = false
ignore = D100,D203,D405
match = *.py

In-file configuration

pydocstyle supports inline commenting to skip specific checks on specific functions or methods. The supported
comments that can be added are:

1. "# noqa" skips all checks.

2. "# noqa: D102,D203" can be used to skip specific checks. Note that this is compatible with skips from
flake8, e.g. # noqa: D102,E501,D203.

For example, this will skip the check for a period at the end of a function docstring:

>>> def bad_function(): # noqa: D400
... """Omit a period in the docstring as an exception"""
... pass

Error Codes

Grouping

Missing Docstrings
D100 Missing docstring in public module
D101 Missing docstring in public class
D102 Missing docstring in public method
D103 Missing docstring in public function
D104 Missing docstring in public package
D105 Missing docstring in magic method
Whitespace Issues
D200 One-line docstring should fit on one line with quotes
D201 No blank lines allowed before function docstring
D202 No blank lines allowed after function docstring
D203 1 blank line required before class docstring
D204 1 blank line required after class docstring

Continued on next page

6 Chapter 1. Quick Start

http://flake8.pycqa.org/

pydocstyle Documentation, Release 1.0.0

Table 1.1 – continued from previous page
D205 1 blank line required between summary line and description
D206 Docstring should be indented with spaces, not tabs
D207 Docstring is under-indented
D208 Docstring is over-indented
D209 Multi-line docstring closing quotes should be on a separate line
D210 No whitespaces allowed surrounding docstring text
D211 No blank lines allowed before class docstring
D212 Multi-line docstring summary should start at the first line
D213 Multi-line docstring summary should start at the second line
D214 Section is over-indented
D215 Section underline is over-indented
Quotes Issues
D300 Use “”“triple double quotes”“”
D301 Use r”“” if any backslashes in a docstring
D302 Use u”“” for Unicode docstrings
Docstring Content Issues
D400 First line should end with a period
D401 First line should be in imperative mood
D401 First line should be in imperative mood; try rephrasing
D402 First line should not be the function’s “signature”
D403 First word of the first line should be properly capitalized
D404 First word of the docstring should not be This
D405 Section name should be properly capitalized
D406 Section name should end with a newline
D407 Missing dashed underline after section
D408 Section underline should be in the line following the section’s name
D409 Section underline should match the length of its name
D410 Missing blank line after section
D411 Missing blank line before section
D412 No blank lines allowed between a section header and its content
D413 Missing blank line after last section
D414 Section has no content

Default Checks

Not all error codes are checked for by default. The default behavior is to check only error codes that are part of the
PEP257 official convention.

All of the above error codes are checked for by default except for D203, D212, D213 and D404.

Publicity

The D1xx group of errors deals with missing docstring in public constructs: modules, classes, methods, etc. It is
important to note how publicity is determined and what its effects are.

How publicity is determined

Publicity for all constructs is determined as follows: a construct is considered public if -

1. Its immediate parent is public and

1.2. Error Codes 7

http://www.python.org/dev/peps/pep-0257/

pydocstyle Documentation, Release 1.0.0

2. Its name does not contain a single leading underscore.

A construct’s immediate parent is the construct that contains it. For example, a method’s parent is a class object. A
class’ parent is usually a module, but might also be a function, method, etc. A module can either have no parent, or it
can have a parent that is a package.

In order for a construct to be considered public, its immediate parent must also be public. Since this definition is
recursive, it means that all of its parents need to be public. The corollary is that if a construct is considered private,
then all of its descendants are also considered private. For example, a class called _Foo is considered private. A
method bar in _Foo is also considered private since its parent is a private class, even though its name does not begin
with a single underscore.

Modules are parsed to look if __all__ is defined. If so, only those top level constructs are considered public. The
parser looks for __all__ defined as a literal list or tuple. As the parser doesn’t execute the module, any mutation of
__all__ will not be considered.

How publicity affects error reports

The immediate effect of a construct being determined as private is that no D1xx errors will be reported for it (or its
children, as the previous section explains). A private method, for instance, will not generate a D102 error, even if it
has no docstring.

However, it is important to note that while docstring are optional for private construct, they are still required to adhere
to your style guide. So if a private module _foo.py does not have a docstring, it will not generate a D100 error, but if
it does have a docstring, that docstring might generate other errors.

Release Notes

pydocstyle version numbers follow the Semantic Versioning specification.

Current Development Version

Major Updates

• Support for Python 2.6 has been dropped (#206, #217).

• Support for PyPy3 has been temporarily dropped, until it will be equivalent to CPython 3.3+ and supported by
pip (#223).

• Support for the pep257 console script has been dropped. Only the pydocstyle console script should be
used (#216, #218).

New Features

• Decorator-based skipping via --ignore-decorators has been added (#204).

• Support for using pycodestyle style wildcards has been added (#72, #209).

• Superfluous opening quotes are now reported as part of D300 (#166, #225).

• Support for numpy conventions verification has been added (#129, #226).

• Fixed a false-positive recognition of D410 and added D412 (#230, #233).

Bug Fixes

• Made parser more robust to bad source files (#168, #214)

8 Chapter 1. Quick Start

http://semver.org/

pydocstyle Documentation, Release 1.0.0

• Modules are now considered private if their name starts with a single underscore. This is a bugfix where “public
module” (D100) was reported regardless of module name (#199, #222).

1.1.1 - October 4th, 2016

Bug Fixes

• Fixed an issue where the flake8-docstrings failed when accessing some public API from pydocstyle.

1.1.0 - September 29th, 2016

Major Updates

• pydocstyle is no longer a single file. This might make it difficult for some users to just add it to their project,
but the project has reached certain complexity where splitting it into modules was necessary (#200).

New Features

• Added the optional error codes D212 and D213, for checking whether the summary of a multi-line docstring
starts at the first line, respectively at the second line (#174).

• Added D404 - First word of the docstring should not be “This”. It is turned off by default (#183).

• Added the ability to ignore specific function and method docstrings with inline comments:

1. “# noqa” skips all checks.

2. “# noqa: D102,D203” can be used to skip specific checks.

Bug Fixes

• Fixed an issue where file paths were printed in lower case (#179, #181).

• The error code D300 is now also being reported if a docstring has uppercase literals (R or U) as prefix (#176).

• Fixed a bug where an __all__ error was reported when __all__ was imported from another module with a
different name (#182, #187).

• Fixed a bug where raise X from Y syntax caused pydocstyle to crash (#196, #200).

1.0.0 - January 30th, 2016

Major Updates

• The project was renamed to pydocstyle and the new release will be 1.0.0!

New Features

• Added support for Python 3.5 (#145).

• Classes nested inside classes are no longer considered private. Nested classes are considered public if their
names are not prepended with an underscore and if their parent class is public, recursively (#13, #146).

• Added the D403 error code - “First word of the first line should be properly capitalized”. This new error is
turned on by default (#164, #165, #170).

• Added support for .pydocstylerc and as configuration file name (#140, #173).

Bug Fixes

• Fixed an issue where a NameError was raised when parsing complex definitions of __all__ (#142, #143).

1.3. Release Notes 9

pydocstyle Documentation, Release 1.0.0

• Fixed a bug where D202 was falsely reported when a function with just a docstring and no content was followed
by a comment (#165).

• Fixed wrong __all__ definition in main module (#150, #156).

• Fixed a bug where an AssertionError could occur when parsing __future__ imports (#154).

Older Versions

Note: Versions documented below are before renaming the project from pep257 to pydocstyle.

0.7.0 - October 9th, 2015

New Features

• Added the D104 error code - “Missing docstring in public package”. This new error is turned on by default.
Missing docstring in __init__.py files which previously resulted in D100 errors (“Missing docstring in
public module”) will now result in D104 (#105, #127).

• Added the D105 error code - “Missing docstring in magic method’. This new error is turned on by default.
Missing docstrings in magic method which previously resulted in D102 error (“Missing docstring in public
method”) will now result in D105. Note that exceptions to this rule are variadic magic methods - specifically
__init__, __call__ and __new__, which will be considered non-magic and missing docstrings in them
will result in D102 (#60, #139).

• Support the option to exclude all error codes. Running pep257 with --select= (or select= in the con-
figuration file) will exclude all errors which could then be added one by one using add-select. Useful for
projects new to pep257 (#132, #135).

• Added check D211: No blank lines allowed before class docstring. This change is a result of a change to the
official PEP257 convention. Therefore, D211 will now be checked by default instead of D203, which required
a single blank line before a class docstring (#137).

• Configuration files are now handled correctly. The closer a configuration file is to a checked file the more it
matters. Configuration files no longer support explain, source, debug, verbose or count (#133).

Bug Fixes

• On Python 2.x, D302 (“Use u”“” for Unicode docstrings”) is not reported if unicode_literals is imported from
__future__ (#113, #134).

• Fixed a bug where there was no executable for pep257 on Windows (#73, #136).

0.6.0 - July 20th, 2015

New Features

• Added support for more flexible error selections using --ignore, --select, --convention,
--add-ignore and --add-select (#96, #123).

Bug Fixes

• Property setter and deleter methods are now treated as private and do not require docstrings separate from the
main property method (#69, #107).

• Fixed an issue where pep257 did not accept docstrings that are both unicode and raw in Python 2.x (#116, #119).

10 Chapter 1. Quick Start

pydocstyle Documentation, Release 1.0.0

• Fixed an issue where Python 3.x files with Unicode encodings were not read correctly (#118).

0.5.0 - March 14th, 2015

New Features

• Added check D210: No whitespaces allowed surrounding docstring text (#95).

• Added real documentation rendering using Sphinx (#100, #101).

Bug Fixes

• Removed log level configuration from module level (#98).

• D205 used to check that there was a blank line between the one line summary and the description. It now checks
that there is exactly one blank line between them (#79).

• Fixed a bug where --match-dir was not properly respected (#108, #109).

0.4.1 - January 10th, 2015

Bug Fixes

• Getting ImportError when trying to run pep257 as the installed script (#92, #93).

0.4.0 - January 4th, 2015

Warning: A fatal bug was discovered in this version (#92). Please use a newer version.

New Features

• Added configuration file support (#58, #87).

• Added a --count flag that prints the number of violations found (#86, #89).

• Added support for Python 3.4, PyPy and PyPy3 (#81).

Bug Fixes

• Fixed broken tests (#74).

• Fixed parsing various colon and parenthesis combinations in definitions (#82).

• Allow for greater flexibility in parsing __all__ (#67).

• Fixed handling of one-liner definitions (#77).

0.3.2 - March 11th, 2014

First documented release!

1.4. Older Versions 11

pydocstyle Documentation, Release 1.0.0

License

Copyright (c) 2012 GreenSteam, <http://greensteam.dk/>

Copyright (c) 2014-2017 Amir Rachum, <http://amir.rachum.com/>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

12 Chapter 1. Quick Start

http://greensteam.dk/
http://amir.rachum.com/

CHAPTER 2

Credits

pydocstyle is a rename and continuation of pep257, a project created by Vladimir Keleshev.

Maintained by Amir Rachum.

13

	Quick Start
	Usage
	Error Codes
	Release Notes
	Older Versions
	License

	Credits

